Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 295, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509455

RESUMO

BACKGROUND: Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS: In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS: We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.


Assuntos
RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Meiose , Espermatogênese/genética , Testículo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos/genética
2.
Data Brief ; 53: 110156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389957

RESUMO

Previous studies have shown that overexpression of the Trypanosoma cruzi U-rich RNA-binding protein 1 (TcUBP1) in insect-dwelling epimastigotes results in a gene expression pattern resembling that of the infective form of the pathogen. Here, we used CRISPR-Cas9-induced edition of TcUBP1 and full-length protein overexpression in epimastigote cells to monitor transcriptomic changes during the epimastigote-to-metacyclic trypomastigote stage transition of T. cruzi. This dataset includes the bioinformatics analysis of three different RNA-seq samples, each with three biological replicates, showing differential mRNA abundances. The current transcriptome report has the potential to shed light on the quantitative variances in the expression of significant up- or down-regulated mRNAs as a consequence of the levels of the UBP1 protein. Raw data files were deposited at the NCBI Sequence Read Archive - SRA at http://ncbi.nlm.nih.gov/Traces/sra/sra.cgi with accession numbers PRJNA907231 and PRJNA949967.

3.
Rev Argent Microbiol ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38403533

RESUMO

Infectious bovine keratoconjunctivitis (IBK) is an ocular disease that affects bovines and has significant economic and health effects worldwide. Gram negative bacteria Moraxella bovis and Moraxella bovoculi are its main etiological agents. Antimicrobial therapy against IBK is often difficult in beef and dairy herds and, although vaccines are commercially available, their efficacy is variable and dependent on local strains. The aim of this study was to analyze for the first time the genomes of Uruguayan clinical isolates of M. bovis and M. bovoculi. The genomes were de novo assembled and annotated; the genetic basis of fimbrial synthesis was analyzed and virulence factors were identified. A 94% coverage in the reference genomes of both species, and more than 80% similarity to the reference genomes were observed. The mechanism of fimbrial phase variation in M. bovis was detected, and the tfpQ orientation of these genes confirmed, in an inversion region of approximately 2.18kb. No phase variation was determined in the fimbrial gene of M. bovoculi. When virulence factors were compared between strains, it was observed that fimbrial genes have 36.2% sequence similarity. In contrast, the TonB-dependent lactoferrin/transferrin receptor exhibited the highest percentage of amino acid similarity (97.7%) between strains, followed by cytotoxins MbxA/MbvA and the ferric uptake regulator. The role of these virulence factors in the pathogenesis of IBK and their potential as vaccine components should be explored.

4.
Sci Rep ; 13(1): 17734, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853061

RESUMO

Infection with high-risk human papillomaviruses like HPV-16 and HPV-18 is highly associated with the development of cervical and other cancers. Malignant transformation requires viral oncoproteins E5, E6 and E7, which promote cell proliferation and increase DNA damage. Oxidative stress and hypoxia are also key factors in cervical malignant transformation. Increased levels of reactive species of oxygen (ROS) and nitrogen (RNS) are found in the hypoxic tumor microenvironment, promoting genetic instability and invasiveness. In this work, we studied the combined effect of E5, E6 and E7 and hypoxia in increasing oxidative stress and promoting DNA damage and nuclear architecture alterations. HaCaT cells containing HPV-18 viral oncogenes (HaCaT E5/E6/E7-18) showed higher ROS levels in normoxia and higher levels of RNS in hypoxia compared to HaCaT parental cells, as well as higher genetic damage in hypoxia as measured by γH2AX and comet assays. In hypoxia, HaCaT E5/E6/E7-18 increased its nuclear dry mass and both cell types displayed marked heterogeneity in nuclear dry mass distribution and increased nuclear foci. Our results show contributions of both viral oncogenes and hypoxia to oxidative stress, DNA damage and altered nuclear architecture, exemplifying how an altered microenvironment combines with oncogenic transformation to promote tumor progression.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 18/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Estresse Oxidativo/genética , Queratinócitos/metabolismo , Oncogenes , Hipóxia/metabolismo , Proteínas E7 de Papillomavirus/genética , Neoplasias do Colo do Útero/patologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Microambiente Tumoral
5.
RNA ; 29(12): 1881-1895, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37730435

RESUMO

Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.


Assuntos
Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/genética , Imunoprecipitação , Reação em Cadeia da Polimerase , Polirribossomos/genética , RNA , Proteínas de Protozoários/genética , Mamíferos
8.
Front Pharmacol ; 14: 1136321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089958

RESUMO

Introduction: Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches. Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development. Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.

9.
J Biol Chem ; 299(5): 104623, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36935010

RESUMO

Trypanosomes regulate gene expression mainly by using posttranscriptional mechanisms. Key factors responsible for carrying out this regulation are RNA-binding proteins, affecting subcellular localization, translation, and/or transcript stability. Trypanosoma cruzi U-rich RNA-binding protein 1 (TcUBP1) is a small protein that modulates the expression of several surface glycoproteins of the trypomastigote infective stage of the parasite. Its mRNA targets are known, but the impact of its overexpression at the transcriptome level in the insect-dwelling epimastigote cells has not yet been investigated. Thus, in the present study, by using a tetracycline-inducible system, we generated a population of TcUBP1-overexpressing parasites and analyzed its effect by RNA-Seq methodology. This allowed us to identify 793 up- and 371 downregulated genes with respect to the wildtype control sample. Among the upregulated genes, it was possible to identify members coding for the TcS superfamily, MASP, MUCI/II, and protein kinases, whereas among the downregulated transcripts, we found mainly genes coding for ribosomal, mitochondrial, and synthetic pathway proteins. RNA-Seq comparison with two previously published datasets revealed that the expression profile of this TcUBP1-overexpressing replicative epimastigote form resembles the transition to the infective metacyclic trypomastigote stage. We identified novel cis-regulatory elements in the 3'-untranslated region of the affected transcripts and confirmed that UBP1m, a signature TcUBP1 binding element previously characterized in our laboratory, is enriched in the list of stabilized genes. We can conclude that the overall effect of TcUBP1 overexpression on the epimastigote transcriptome is mainly the stabilization of mRNAs coding for proteins that are important for parasite infection.


Assuntos
Proteínas de Protozoários , Proteínas de Ligação a RNA , Trypanosoma cruzi , Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA-Seq , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
10.
Biochem Biophys Res Commun ; 657: 86-91, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36996545

RESUMO

During tumorigenesis, the mechanical properties of cancer cells change markedly, with decreased stiffness often accompanying a more invasive phenotype. Less is known about the changes in mechanical parameters at intermediate stages in the process of malignant transformation. We have recently developed a pre-tumoral cell model by stably transducing the immortalized but non-tumorigenic human keratinocyte cell line HaCaT with the E5, E6 and E7 oncogenes from HPV-18, one of the leading causes of cervical cancer and other types of cancer worldwide. We have used atomic force microscopy (AFM) to measure cell stiffness and to obtain mechanical maps of parental HaCaT and HaCaT E5/E6/E7-18 cell lines. We observed a significant decrease in Young's modulus in HaCaT E5/E6/E7-18 cells measured by nanoindentation in the central region, as well as decreased cell rigidity in regions of cell-cell contact measured by Peakforce Quantitative Nanomechanical Mapping (PF-QNM). As a morphological correlate, HaCaT E5/E6/E7-18 cells displayed a significantly rounder cell shape than parental HaCaT cells. Our results therefore show that decreased stiffness with concomitant perturbations in cell shape are early mechanical and morphological changes during the process of malignant transformation.


Assuntos
Proteínas Oncogênicas Virais , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomavirus Humano 18/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Oncogenes , Transformação Celular Neoplásica/genética , Queratinócitos/metabolismo
11.
Sci Rep ; 12(1): 21699, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522457

RESUMO

Hypoxia is a condition frequently encountered by cells in tissues, whether as a normal feature of their microenvironment or subsequent to deregulated growth. Hypoxia can lead to acidification and increased oxidative stress, with profound consequences for cell physiology and tumorigenesis. Therefore, the interplay between hypoxia and oxidative stress is an important aspect for understanding the effects of hypoxic microenvironments on cells. We have used a previously developed variant of the method of coverslip-induced hypoxia to study the process of acidification in a hypoxic microenvironment and to simultaneously visualize intracellular levels of hypoxia and oxidative stress. We observed high accumulation of CO2 in hypoxic conditions, which we show is the main contributor to acidification in our model. Also, increased levels of oxidative stress were observed in moderately hypoxic cells close to the oxygen source, where the mitochondrial membrane potential was preserved. Conversely, cells at large distances from the oxygen source showed higher levels of hypoxia, milder oxidative stress and reduced mitochondrial membrane potential. Our results contribute to characterize the interplay between reduced oxygen levels, acidification and oxidative stress in a simple in vitro setting, which can be used to model cell responses to an altered environment, such as the early tumor microenvironment.


Assuntos
Hipóxia , Oxigênio , Humanos , Oxigênio/metabolismo , Hipóxia/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia Celular , Concentração de Íons de Hidrogênio
12.
Odontoestomatol ; 24(40)dic. 2022.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1431007

RESUMO

La hipoxia es un factor fundamental en el proceso de génesis tumoral, así como en patologías precursoras de cáncer, como es el Liquen Plano Oral (LPO). Objetivo: Determinar si es posible establecer una correlación entre las alteraciones que sufren queratinocitos normales en un microambiente hipóxico in vitro y alteraciones que aparecen en los queratinocitos en el epitelio de la mucosa oral en el contexto de la patología LPO. Métodos: Se estudiaron los cambios morfológicos mediante microscopía de contraste de fases, y la detección de marcadores asociados a hipoxia de queratinocitos humanos (HaCaT), como modelo celular oral, en un microambiente hipóxico generado por la variante del método "Hipoxia inducida por cubreobjetos". Resultados: Mediante microscopía confocal se observó la presencia de los marcadores de hipoxia GLUT-1 y aductos de pimonidazol (Hipoxyprobe) en los cultivos celulares de HaCaT expuestos a un microambiente hipóxico. Además, se observó la presencia del marcador GLUT-1 mediante inmunohistoquímica en tejido epitelial humano derivado de biopsias de la patología LPO. Conclusiones: Se estableció una correlación entre las alteraciones detectadas en queratinocitos humanos inducidos a un microambiente hipóxico in vitro y las alteraciones detectadas in vivo en tejido epitelial de la mucosa oral.


A hipóxia é um fator fundamental no processo de gênese tumoral, bem como em patologias precursoras do câncer, como o Líquen Plano Oral (LPO). Objetivo: Determinar se é possível estabelecer uma correlação entre as alterações que os queratinócitos normais sofrem em um microambiente hipóxico in vitro e as alterações que aparecem nos queratinócitos no epitélio da mucosa oral no contexto da patologia do LPO. Métodos: As alterações morfológicas foram estudadas por microscopia de contraste de fase e a detecção de marcadores associados à hipóxia de queratinócitos humanos (HaCaT), como modelo de célula oral, em um microambiente hipóxico gerado pela variante do método "Hipóxia induzida por lamínulas". Resultados: Por microscopia confocal, observou-se a presença dos marcadores de hipóxia GLUT-1 e Hipoxyprobe em culturas de células HaCaT expostas a um microambiente hipóxico. Além disso, a presença do marcador GLUT-1 foi observada por imuno-histoquímica em tecido epitelial humano derivado de biópsias de patologia de LPO. Conclusões: Foi estabelecida uma correlação entre as alterações detectadas em queratinócitos humanos induzidas em um microambiente hipóxico in vitro e as alterações detectadas in vivo no tecido epitelial da mucosa oral.


Hypoxia is a fundamental factor in the process of tumor genesis, as well as in precursor pathologies of cancer, such as Oral Lichen Planus (OLP). Objective: To determine if it is possible to establish a correlation between the alterations that normal keratinocytes suffer in a hypoxic microenvironment in vitro and alterations that appear in the keratinocytes in the epithelium of the oral mucosa in the context of OLP pathology. Methods: Morphological changes were studied by phase contrast microscopy, and the detection of markers associated with hypoxia of human keratinocytes (HaCaT), as an oral cell model, in a hypoxic microenvironment generated by the variant of the method "Hypoxia induced by coverslips". Results: Using confocal microscopy, the presence of hypoxia markers GLUT-1 and Hipoxyprobe was observed in HaCaT cell cultures exposed to a hypoxic microenvironment. In addition, the presence of the GLUT-1 marker was observed by immunohistochemistry in human epithelial tissue derived from biopsies of OLP pathology. Conclusions: A correlation was established between the alterations detected in human keratinocytes induced in a hypoxic microenvironment in vitro and the alterations detected in vivo in epithelial tissue of the oral mucosa.

13.
Antioxidants (Basel) ; 11(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36009341

RESUMO

Soybean (Glycine max (L.) Merr.) establishes symbiosis with rhizobacteria, developing the symbiotic nodule, where the biological nitrogen fixation (BNF) occurs. The redox control is key for guaranteeing the establishment and correct function of the BNF process. Plants have many antioxidative systems involved in ROS homeostasis and signaling, among them a network of thio- and glutaredoxins. Our group is particularly interested in studying the differential response of nodulated soybean plants to water-deficit stress. To shed light on this phenomenon, we set up an RNA-seq experiment (for total and polysome-associated mRNAs) with soybean roots comprising combined treatments including the hydric and the nodulation condition. Moreover, we performed the initial identification and description of the complete repertoire of thioredoxins (Trx) and glutaredoxins (Grx) in soybean. We found that water deficit altered the expression of a greater number of differentially expressed genes (DEGs) than the condition of plant nodulation. Among them, we identified 12 thioredoxin (Trx) and 12 glutaredoxin (Grx) DEGs, which represented a significant fraction of the detected GmTrx and GmGrx in our RNA-seq data. Moreover, we identified an enriched network in which a GmTrx and a GmGrx interacted with each other and associated through several types of interactions with nitrogen metabolism enzymes.

14.
J Vis Exp ; (185)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35848824

RESUMO

The aim of this protocol is to provide a strategy for studying the eukaryotic translatome of the soybean (Glycine max) symbiotic nodule. This paper describes methods optimized to isolate plant-derived polyribosomes and their associated mRNAs to be analyzed using RNA-sequencing. First, cytoplasmic lysates are obtained through homogenization in polysome- and RNA-preserving conditions from whole, frozen soybean nodules. Then, lysates are cleared by low-speed centrifugation, and 15% of the supernatant is used for total RNA (TOTAL) isolation. The remaining cleared lysate is used to isolate polysomes by ultracentrifugation through a two-layer sucrose cushion (12% and 33.5%). Polysome-associated mRNA (PAR) is purified from polysomal pellets after resuspension. Both TOTAL and PAR are evaluated by highly sensitive capillary electrophoresis to meet the quality standards of sequencing libraries for RNA-seq. As an example of a downstream application, after sequencing, standard pipelines for gene expression analysis can be used to obtain differentially expressed genes at the transcriptome and translatome levels. In summary, this method, in combination with RNA-seq, allows the study of the translational regulation of eukaryotic mRNAs in a complex tissue such as the symbiotic nodule.


Assuntos
Biossíntese de Proteínas , Polirribossomos/genética , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA-Seq , Análise de Sequência de RNA , /metabolismo
15.
Noncoding RNA ; 8(4)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35893237

RESUMO

Trypanosomatids are protozoan parasites that cause devastating vector-borne human diseases. Gene expression regulation of these organisms depends on post-transcriptional control in responding to diverse environments while going through multiple developmental stages of their complex life cycles. In this scenario, non-coding RNAs (ncRNAs) are excellent candidates for a very efficient, quick, and economic strategy to regulate gene expression. The advent of high throughput RNA sequencing technologies show the presence and deregulation of small RNA fragments derived from canonical ncRNAs. This review seeks to depict the ncRNA landscape in trypanosomatids, focusing on the small RNA fragments derived from functional RNA molecules observed in RNA sequencing studies. Small RNA fragments derived from canonical ncRNAs (tsRNAs, snsRNAs, sdRNAs, and sdrRNAs) were identified in trypanosomatids. Some of these RNAs display changes in their levels associated with different environments and developmental stages, demanding further studies to determine their functional characterization and potential roles. Nevertheless, a comprehensive and detailed ncRNA annotation for most trypanosomatid genomes is still needed, allowing better and more extensive comparative and functional studies.

16.
Noncoding RNA ; 8(1)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35202085

RESUMO

Prostate cancer is a major health problem worldwide. MiR-183 is an oncomiR and a candidate biomarker in prostate cancer, affecting various pathways responsible for disease initiation and progression. We sought to discover the most relevant processes controlled by miR-183 through an unbiased transcriptomic approach using prostate cell lines and patient tissues to identify miR-183 responsive genes and pathways. Gain of function experiments, reporter gene assays, and transcript and protein measurements were conducted to validate predicted functional effects and protein mediators. A total of 135 candidate miR-183 target genes overrepresenting cell adhesion terms were inferred from the integrated transcriptomic analysis. Cell attachment, spreading assays and focal adhesion quantification of miR-183-overexpressing cells confirmed the predicted reduction in cell adhesion. ITGB1 was validated as a major target of repression by miR-183 as well as a mediator of cell adhesion in response to miR-183. The reporter gene assay and PAR-CLIP read mapping suggest that ITGB1 may be a direct target of miR-183. The negative correlation between miR-183 and ITGB1 expression in prostate cancer cohorts supports their interaction in the clinical set. Overall, cell adhesion was uncovered as a major pathway controlled by miR-183 in prostate cancer, and ITGB1 was identified as a relevant mediator of this effect.

17.
J Alzheimers Dis ; 86(1): 365-386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034904

RESUMO

BACKGROUND: Defining cellular mechanisms that drive Alzheimer's disease (AD) pathogenesis and progression will be aided by studies defining how gene expression patterns change during pre-symptomatic AD and ensuing periods of declining cognition. Previous studies have emphasized changes in transcriptome, but not translatome regulation, leaving the ultimate results of gene expression alterations relatively unexplored in the context of AD. OBJECTIVE: To identify genes whose expression might be regulated at the transcriptome and translatome levels in AD, we analyzed gene expression in cerebral cortex of two AD model mouse strains, CVN (APPSwDI;NOS2 -/- ) and Tg2576 (APPSw), and their companion wild type (WT) strains at 6 months of age by tandem RNA-Seq and Ribo-Seq (ribosome profiling). METHODS: Identical starting pools of bulk RNA were used for RNA-Seq and Ribo-Seq. Differential gene expression analysis was performed at the transcriptome, translatome, and translational efficiency levels. Regulated genes were functionally evaluated by gene ontology tools. RESULTS: Compared to WT mice, AD model mice had similar levels of transcriptome regulation, but differences in translatome regulation. A microglial signature associated with early stages of Aß accumulation was upregulated at both levels in CVN mice. Although the two mice strains did not share many regulated genes, they showed common regulated pathways related to AßPP metabolism associated with neurotoxicity and neuroprotection. CONCLUSION: This work represents the first genome-wide study of brain translatome regulation in animal models of AD and provides evidence of a tight and early translatome regulation of gene expression controlling the balance between neuroprotective and neurodegenerative processes in brain.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Transcriptoma
18.
Bioinform Adv ; 2(1): vbac054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699360

RESUMO

Motivation: The use of high precision for representing quality scores in nanopore sequencing data makes these scores hard to compress and, thus, responsible for most of the information stored in losslessly compressed FASTQ files. This motivates the investigation of the effect of quality score information loss on downstream analysis from nanopore sequencing FASTQ files. Results: We polished de novo assemblies for a mock microbial community and a human genome, and we called variants on a human genome. We repeated these experiments using various pipelines, under various coverage level scenarios and various quality score quantizers. In all cases, we found that the quantization of quality scores causes little difference (or even sometimes improves) on the results obtained with the original (non-quantized) data. This suggests that the precision that is currently used for nanopore quality scores may be unnecessarily high, and motivates the use of lossy compression algorithms for this kind of data. Moreover, we show that even a non-specialized compressor, such as gzip, yields large storage space savings after the quantization of quality scores. Availability and supplementary information: Quantizers are freely available for download at: https://github.com/mrivarauy/QS-Quantizer.

19.
RNA Biol ; 18(sup2): 832-855, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882524

RESUMO

Neurons have highlighted the needs for decentralized gene expression and specific RNA function in somato-dendritic and axonal compartments, as well as in intercellular communication via extracellular vesicles (EVs). Despite advances in miRNA biology, the identity and regulatory capacity of other small non-coding RNAs (sncRNAs) in neuronal models and local subdomains has been largely unexplored.We identified a highly complex and differentially localized content of sncRNAs in axons and EVs during early neuronal development of cortical primary neurons and in adult axons invivo. This content goes far beyond miRNAs and includes most known sncRNAs and precisely processed fragments from tRNAs, sno/snRNAs, Y RNAs and vtRNAs. Although miRNAs are the major sncRNA biotype in whole-cell samples, their relative abundance is significantly decreased in axons and neuronal EVs, where specific tRNA fragments (tRFs and tRHs/tiRNAs) mainly derived from tRNAs Gly-GCC, Val-CAC and Val-AAC predominate. Notably, although 5'-tRHs compose the great majority of tRNA-derived fragments observed invitro, a shift to 3'-tRNAs is observed in mature axons invivo.The existence of these complex sncRNA populations that are specific to distinct neuronal subdomains and selectively incorporated into EVs, equip neurons with key molecular tools for spatiotemporal functional control and cell-to-cell communication.


Assuntos
Axônios/metabolismo , Comunicação Celular , Vesículas Extracelulares/metabolismo , Neurônios/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Transporte Biológico , Fracionamento Celular/métodos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Crescimento Neuronal , Conformação de Ácido Nucleico , Pequeno RNA não Traduzido/química , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Frações Subcelulares
20.
mSphere ; 6(5): e0036621, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468164

RESUMO

Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Ribossomos/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteínas de Protozoários/análise , RNA de Protozoário/análise , Transcriptoma , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...